STA-GAN: A Spatio-Temporal Attention Generative Adversarial Network for Missing Value Imputation in Satellite Data

نویسندگان

چکیده

Satellite data is of high importance for ocean environment monitoring and protection. However, due to the missing values in satellite data, caused by various force majeure factors such as cloud cover, bad weather sensor failure, quality reduced greatly, which hinders applications practice. Therefore, a variety methods have been proposed conduct imputation improve its quality. these cannot well learn short-term temporal dependence dynamic spatial resulting performance when rate large. To address this issue, we propose Spatio-Temporal Attention Generative Adversarial Network (STA-GAN) value data. First, develop (STA) mechanism based on Graph (GAT) features capturing both Then, learned from STA are fused enrich spatio-temporal information training generator discriminator STA-GAN. Finally, use generated trained STA-GAN fill Experimental results real datasets show that largely outperforms baseline methods, especially filling with large rates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Context-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network

Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...

متن کامل

TAC-GAN - Text Conditioned Auxiliary Classifier Generative Adversarial Network

In this work, we present the Text Conditioned Auxiliary Classifier Generative Adversarial Network, (TAC-GAN) a text to image Generative Adversarial Network (GAN) for synthesizing images from their text descriptions. Former approaches have tried to condition the generative process on the textual data; but allying it to the usage of class information, known to diversify the generated samples and ...

متن کامل

Missing Value Imputation Based on Data Clustering

We propose an efficient nonparametric missing value imputation method based on clustering, called CMI (Clustering-based Missing value Imputation), for dealing with missing values in target attributes. In our approach, we impute the missing values of an instance A with plausible values that are generated from the data in the instances which do not contain missing values and are most similar to t...

متن کامل

Temporal Generative Adversarial Nets

In this paper, we propose a generative model, Temporal Generative Adversarial Nets (TGAN), which can learn a semantic representation of unlabeled videos, and is capable of generating videos. Unlike existing Generative Adversarial Nets (GAN)-based methods that generate videos with a single generator consisting of 3D deconvolutional layers, our model exploits two different types of generators: a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2022

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs15010088